Sona College of Technology (Autonomous), Salem – 636 005

Department of Information Technology

ADVANCED DIPLOMA / CERTIFICATION PROGRAMME ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING CURRICULUM & SYLLABI

Academic year – 2021-22

Semester 1:

S.NO	Topics Covered	Credits
1	Introduction to AI	1
2	Python for Data Science	2
3	Data Wrangling Techniques	2
4	Introduction to Neural Networks	1
5	TensorFlow & Keras	2
6	Capstone Project I	2
	Total	10

Semester 2:

S.NO	Topics Covered	Credits
1	Convolutional Neural Networks	2
2	Recurrent Neural Networks	2
3	Natural Language Processing	2
4	Build & Deploy an AI Application	1
5	Practical AI Example	1
6	Capstone Project II	2
	Total	10

Semester 3:

S.NO	Topics Covered	Credits
1	Fundamentals of Machine Learning	2
2	Mathematics and Statistics	2
3	Methods and Algorithms in ML (Supervised Learning)	4
4	Capstone Project III	2
	Total	10
	1 ottal	

Semester 4:

S.NO	Topics Covered	Credits
1	Methods and Algorithms in ML (Unsupervised)	3
2	Hyperparameter Tuning and Validation	3
3	Recommendations Systems	2
4	Capstone Project IV	2
	Total	10

ADVANCED DIPLOMA / CERTIFICATION PROGRAMME ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING SYLLABUS

Semester I:

Module 1: Introduction to Artificial Intelligence:

- > Introduction to AI
- > Intelligent Agents
- ➤ Search Methods and Knowledge Representation
- Use Cases of Artificial Intelligence
- ➤ Role of Machine Learning Engineer
- ➤ Machine Learning Tools & Packages

Module 2: Python for Data Science

- > Python Data Structures
- > Python Programming Fundamentals
- Conditions and Branching
- ➤ Loops
- > Functions
- > Python Packages
- ➤ Working with NUMPY
- ➤ Working with Pandas
- ➤ Introduction to Data Visualization
- ➤ Introduction to Matplotlib and Seaborn
- ➤ Basic Plotting with Matplotlib and Seaborn

Module 3: Data Wrangling Techniques

- Introduction to Data pre-processing
- > Importing the Dataset
- ➤ Handling Missing data
- Working with Categorical Data
- > Splitting the data into Train and Test set
- ➤ Feature Scaling

Module 4: Introduction to Neural Networks

- > The Neuron
- > The Activation Function
- ➤ How do Neural Networks work?
- ➤ How do Neural Networks learn?
- Gradient Descent
- > Stochastic Gradient Descent
- Backpropagation

Module 5: TensorFlow & Keras

- ➤ Introduction to TensorFlow & Keras Framework
- > Introduction to the Sequential Mode
- > Activation functions
- > Layers
- > Training
- Loss function
- ➤ Building ANN Using Tensor flow
- > Evaluating Improving and Tuning ANN

Capstone Project I

Semester II

Module 6: Convolutional Neural Networks

- ➤ Introduction to Convolutional Neural Networks
- ➤ What are convolutional neural networks?
- > Step 1 Convolution Operation
- > Step 1(b) ReLU Layer
- > Step 2 Pooling
- > Step 3 Flattening
- > Step 4 Full Connection Classification of images using CNN

> Evaluating, Improving, and Tuning the CNN

Module 7: Recurrent Neural Networks

- > Introduction to Recurrent Neural Networks
- > The idea behind Recurrent Neural Networks
- ➤ The Vanishing Gradient Problem
- **▶** LSTMs
- ➤ LSTM Variations Predicting Google stock prices using RNN
- > Evaluating, Improving, and Tuning the RNN

Module 8: Natural Language Processing

- > Introduction to Natural Language Processing
- > Introduction to NTLK
- Bag of Words model
- > Natural Language Processing in Python
- > Sentiment analysis using Natural Language Processing

Module 9: Practical AI Examples:

- ➤ Fare Prediction for Uber
- > Test bench time reduction for Mercedes-Benz
- > Products rating prediction for Amazon
- > Demand Forecasting for Walmart
- ➤ Improving customer experience for Comcast
- ➤ Attrition Analysis for IBM
- ➤ NYC 311 Service Request Analysis
- ➤ Movie Lens Dataset Analysis
- Stock Market Data Analysis

Module 10: Build & Deploy an AI Application

- > Introduction to different modes of Deployments
- > Working with Flask framework
- > Building an application with Flask Framework

> Integrating Deep learning model with Web Application

Capstone Project II

Semester III

Module 11: Fundamentals of Machine Learning

- ➤ Usecase1: Facebook Auto-Tagging/Face Recognition in Mobiles
- ➤ Usecase2: Google Assistant
- Usecase3: Youtube/Netflix/Amazon Recommendation Systems
- Usecase4: Dynamic Pricing in Travel
- Usecase5: Google Translate
- Usecase6: Gmail Spam Detection
- > Usecase7: Sophia a social humanoid robot

Module 12: Mathematics & Statistics

- Introduction to Probability
 - ➤ Mean, Median, Mode, Variance, Standard Deviation
 - Quantiles
 - ➤ Gaussian (Normal) Distribution, Skew Distribution
- Covariance and Correlation
 - > Linear Regression
 - > Logistic Regression
 - ➤ Naïve Bayes Classifier
 - ➤ Bias-variance trade-off
 - Dimensionality reduction using Principal component Analysis
 - > Time Series Forecasting
 - > Hands-on Lab

Module 13: Methods and Algorithms in Machine Learning Part I (Supervised Learning)

- > Supervised Learning
- > Regression

- o Simple Linear Regression
- o Multi Linear Regression
- Polynomial Regression
- Decision Tree
- Random Forest
- Classification
 - o Logistic Regression
 - o K-Nearest Neighbours
 - o Support Vector Machine
 - o Naive Bayes
 - Decision Tree
 - o Random Forest
- ➤ Hands-on Lab

Capstone Project III

Semester IV

Module 14: Methods and Algorithms in Machine Learning (PART-2)

- > Unsupervised Learning
- ➤ K-Means Clustering
- > Hierarchical Clustering
- ➤ Ridge Regression
- > XGBoost Algorithm
- > Hands-on Lab

Module 15: Hyper parameters Tuning & Validation

- ➤ Grid Search
- Randomized Search
- Cross Validation
- ➤ Hyperparameter Tuning and Model Selection

➤ Hands-on Lab

Module 16: Recommendation Systems

- > Collaborative Recommender System
- > Content Based Recommender System
- > Hands-on Lab

Capstone Project IV